
COVID-19 Verified Credentials 
meet reality

Can a Rules Engine help?
Neil Thomson

QueryVision, ToIP, MyData Canada



Goal of this Presentation
• See if a Rules Engine approach can address some issues raised by 

early feedback on how governments intend to use vaccine passports

• Present early thoughts on issues that need to be resolved, plus 
requirements (and suggestions) on possible solutions, benefits, trade-
offs, …

• Generate Feedback
• Feasible? Worth pursuing?

• Issues that need to be fixed (or added to requirements)

• Alternatives 



What is unique about the Good Health Pass?

• Technical Buy In - It’s a well thought through solution by a large 
number of industry players.

• Speed Dating - It is attempting to address an urgent, controversial 
world wide problem, that is getting near real-time reactions on how 
non-technical governance groups (governments, public-health) react 
to it

• Early Stages - It’s early enough that future directions can be suggested 



Standard VC Issuer/Holder/Verifier model



GHP Blueprint – Data structure



(Current) GHP “Blueprint

GHP VC definition

• A package of 
• Credentials (vaccine, test, recovery) with “minimal data” 

to support “Proof & presentation”
• GHP "Pass": name, DOB, status (T/F) for:

• Vaccination, [infection] Test, Recovery

• Alternative (to Pass.status): 
• Verifier asks for Holder consent to access credentials and 

the use them with (Verifier) internal logic to determine VC 
acceptance



GHP VC Issuer/Holder/Verifier model

Notes: 
• Acknowledge initiating request
• Verifier can ask for Proof or 

Credentials (or sub-set)
• (GHP) Proof -> “Pass”



Reality – initial Vaccine acceptance criteria

• US Center for Disease Control (CDC), Cruise Lines (& others 
following CDC) 
• Only Moderna and Pfizer vaccines

• No mixing of vaccines (widely practiced in Canada, Spain, UK, ...)

• France
• AstraZeneca, but not if made in India

Verifiers are the driver for VCs



• Vaccine credential data upgrades
• Multiple Vaccine credentials (vs single)

• Supporting data [credential] claims
• Medicinal product claims (Vaccines, Test)

• Manufacturer (Country, site (manufacturing plant))

• Date of manufacture, batch number

• Verifiers bypass GHP Passes – use GHP Credentials directly
• Potential for PII/personal data compromised

• Transparency issues?

• Potential for jurisdiction change of criteria without notice

• Holder uncertainty

Potential impact: GHP model



If this trend continues?

1. [Worst case scenario]

(Verifier) jurisdiction specific VCs 
• Custom evaluation logic
• Custom (or extended) schema model, data
Potential Impact:
• Holders needing many VCs
• Jurisdiction specific vaccine, test, recovery data required

2. [Unavoidable?]

Upgrade GHP data from minimal to realistic to support jurisdiction 
acceptance criteria

3. …?



Could a Rule Engine help?
• Observations

• The data problem has to be fixed, and that should be doable

• VC acceptance evaluation logic (on the same data) can (and will) vary widely

• (Ungoverned) Verifier (internal/black box) evaluation logic likely to become an 
issue at jurisdiction and personal levels due to lack of transparency. 
• If all I know is my GHP was rejected, how do I resolve the issue(s)?

• Proposal: provide an independent MyData Operator type component 
to evaluate (Holder) VC credentials based on Verifier supplied 
evaluation logic, with only the results returned (pass/fail)



VClaim Evaluator - requirements
• Evaluator cannot compromise Issuer, Holder, Verifier security

• It must be as resistant to MITM attacks as I/H/V components

• Evaluator communication with Holder, Verifier uses the same 
mechanisms (proofs, trust exchange, etc.)

• Evaluator must be a validated and approved component, evaluated by 
a Governance Authority or certified agent/agency

• The evaluation (rules) engine must support procedural logic and
generate (and consume) data/query requests via APIs in a web 
environment, including agains DDE Data Containers (e.g. ACDC)
• Preferred to use an off the shelf solution (JavaScript, Ruby, …) with VC Eval 

specific libraries



“Dynamic VC” model 



“Dynamic” VC
Workflow



VClaim Evaluator
• Holder provides Credential data via DDE Data Container (ACDC) 

• Verifier supplies an evaluation expression written in a procedural 
language (e.g., JavaScript function) as source code
• Verifier must sign the expression and register it with the Ledger prior to use
• The Evaluator must validate the expression (with the ledger) at run time
• Data access queries must be VC schema aware and have appropriate 

authorization
• Access to VCs in a Data Container will be via Data Container (standardized) API 

calls
• The default result of the evaluation is Pass/Fail

• Other data returned in the result requires Holder consent (and related Governance)

• Result is passed to
• Verifier - equivalent to Proof
• To Holder - provides proof or reason for refusal, plus copy of evaluation 

expression (for logging, compliance, …)



VClaim Evaluator – why JavaScript?
• Evaluation core is queries against credential data

• ACDC/Data Container will need at least minimal query API

• Alternative
• Eval component extracts ACDC data 

• Procedural logic also required
• If multiple vaccines and none have more than 1 dose 

then status = fail, reason = “mixed vaccines not acceptable” 

• Why re-invent the wheel?

• Interpretive desired
• Source code readable, auditable, easily portable, signable

• Can run in DDE environments



VClaim Evaluator - Benefits
• Trusted 3rd party evaluation

• Transparency on evaluation criteria, outcomes (returns results to 
Holder)

• Minimal exposure of Holder credentials and claims. Only claims
specifically included in the results (with consent) are presented to the 
Verifier

• Replaces the need for ZKP of ownership of claims/credential details as 
Evaluator providing equivalent service

• VCs can now be a passive container as evaluation partitioned to a 
separate component

• Use of a standard interpretive procedural language + data library 
provides all the required functionality without custom query language 
or evaluation engine


