
OpenDSU
Presentation for Trust over IP Community

Marco Cuomo
Sînică Alboaie

29 March 2021

Overview

● PharmaLedger Platform Architecture will be based on OpenDSU
● Result of a EU Research Project: PrivateSky (2015-2021)
● Towards creating an IDSA community
● OpenDSU core ideas

○ KeySSIs as generalisation of DIDs
○ Data Sharing Units: signed data and code anchored in blockchains/ledgers

■ approach to solve data sharing and interoperability
■ data validations, provenance, integrity by blockchain anchoring

○ Self Sovereign Applications and the OpenDSU vision of Universal Wallets
● Complementarity but also in disagreement with some DID & VC core beliefs

○ Real use cases require heavy customisations (data-models + DSL programmability is weak)
○ Zero Access Infrastructure and avoidance of the Cloud Agents
○ Standardised verification looks like a badly leaking abstraction

● OpenDSU specific approach related to validation
○ Custom code based validations

Partnership
2008 - 2024

€2.5 bn

> €5 bn

€2.5 bn

IMI2: 2014-2024
€3.3 bn budget
More ambitious

More open
Greater scope

60 projects so far

IMI1: 2008-2014
€2 bn budget
59 projects

Innovative Medicines Initiatives (IMI)
Europe’s partnership for health

PharmaLedger in a Nutshell

❖ Duration: 3 year, Jan ‘20 – Dec ‘22

❖ Consortium: 29 partners, largest of its kind

❖ Budget: EUR 22 million

❖ Focus Areas: Supply Chain, Clinical Trial, and Health

Data

Who? PharmaLedger partners comprises of pharmaceutical

companies, hospitals, universities, patient organizations, tech
companies... building an ecosystem!

What? A scalable blockchain platform validated through reference

use cases in supply chain, clinical trials and health data that will serve
trendsetters for the industry, enabling early adopters.

How? Pharmaledger will design, validate and provide agile

delivery of innovative blockchain-enabled healthcare applications
across the industry, from manufacturers to patients; while creating an
innovative governance approach for sustainability.

Why? To empower patients, increase trust among healthcare

stakeholders, support medicine drug traceability and data privacy, and
build a new culture of collaboration in healthcare.

PharmaLedger

ePI: a concrete use case for OpenDSU

Content Updates
Languages

Review and
Approval between
Manufacturer and
Health Authority

Patient
Safety and

Convenience

This use case starts with the creation of the ePI in digital
form by the manufacturer, the review and approval of
the ePI with the Health Authorities, updates to the ePI
and dissemination of the ePI to the Patient/ Health Care
Practitioner/ Provider (HCP).

Blockchain and PharmaLedger Value Proposition

Patient
Access and

Safety
Regulatory
efficiency

“Greener”
Industry Economy

Data Self-Sovereignty and Anonymity are paramount and not negotiable

Transparent and immutable review and approval transaction records.
Smart contracts set the transaction rules so only approved eLeaflets are published

Decentralised system for storing ePI provides secure platform, instead of central
database, providing resilience against cyber attacks

Facilitates transactions between manufacturer systems and multiple health
authorities with easy access for Patient with ‘One App’

Layered Architecture

● Blockchain Agnostic
○ Can use any blockchain

○ Integrity & Traceability

● Hierarchical Blockchains
○ Increase security for ledgers

with small number of replicas

○ No size fits all

● Off-chain data and computation

integrity
○ Confidential Smart Contracts

○ Use Case Specific Optimisations

Hierarchical Blockchains

OpenDSU APIs

Web APIs / SDKs

Root
UC1: ETH

UC2: HLF
Other Ledger

Company
Ledger

Identities (DIDs) Validation Other..

BDNS Bricking Other...Anchoring

App 1 App 2 App 3 App.....

M
ul

tip
le

 B
lo

ck
ch

ai
ns

Us
e

Ca
se

s

Anchoring in Blockchain

Applications

APIs/Adapters/Integrations

Notifications

Off-chain Storage (Data Sharing Units)

Root
Blockchain

Decentralised
Identities

Blockchain

UC1

UC4

Other
Blockchains

UC 2

eWallet - DSU

DSUDSU

DSU

Blockchains (On-Chain) Off-Chain - Reconstructed in Wallets

DSU
UC3

Blockchain Anchor Data Reference

AnchorId from KeySSI
HashLinks (All Versions)
Update Control Crypto

Microledger
Public, Confidential & Private Data
Secret, Public, Private Keys (DKMS)
Applications Specific Code
Signatures, Timestamps
Verification Code

DSU Anchoring

OpenDSU: DSU-Types Model

Data Sharing Units (DSU):
● Encrypted and identified by KeySSIs
● Can store Keys used for encryption and digital signatures

● Data - File Systems or Embedded Databases (key value, indexed, ledgers)

● “Contains” code (Validation & Business Logic) from a DSU-Type
● Instances of DSU Types

DSU- Types (named also DSU constitutions)
● A DSU storing SIGNED CODE
● Like a class for DSU instances
● DSU APIs (abstract interfaces that hide internal data representations)

DSU

DSU Type

DSU Reconstruction from Bricks

Execution Environment Bricks Storage

Blockchain

Business Apps
(Cloud or Edge Agents) KeySSI

Anchor

DSU
Reconstruction

Sandbox

SDK

DSU Instance

Brick Brick Brick

Brick Brick Brick

Brick Brick Brick

Brick Brick Brick

Brick Brick Brick

Brick Brick Brick

Anchor

Anchor Anchor

Anchor Anchor

Data

Code

● Blockchain is for Anchoring
Minimise Data Leakages
Decentralised Access Control using
KeySSIs

○ Identifier

○ Cryptographic Key

● Client-Side Encryption
● The code of the DSU executed in a

sandbox (Cloud or Edge Agents)

DSUs are lightweight JavaScript
containers

The OpenDSU Reference Architecture Overview

Zero Access
Utility Network

Company

System
Of

Records
(ERP)

Bricks
Storage

Agent
(Edge or Cloud)

Integrations
(Edge or Cloud

Agents)

 Use Case
Blockchain

Root Blockchain

H
ashLink

DSU

SSAppsKeySSIs

KeySSIsKeySSIs

Wb APIs

Bricks Storage - detailed structure

It’s a web service that stores and
retrieves bricks

A brick once created is read-only and
HASH identified

A DSU is saved as bunch of Bricks
(starting with a BrickMap that keeps
references 1 to all other Bricks from
the DSU)

If you want to load a DSU the engine
loads the first brick (BrickMap), then
based on it it loads the rest of the DSU

DSU
Bricks storage

BrickMap Brick

Brick Brick

Brick Brick

Brick Brick

Brick Brick

1 - HashLinkSSI 12

BDNS : Decentralisation by segregation

BDNS stands for Blockchain Domain Naming System

Resolve names into blockchain network configurations

It’s the DNS of OpenDSUs but probably could replace
DNS. (DNS was launched in 1985...)

BDNS aims to be a hierarchical and decentralized
naming system for blockchains, distributed ledgers,
and even for individual DSUs.

BDNS extends/complements the DNS while
preserving the existing user experience for the
average user.

Example of a blockchain domains:

vault.novartis.pharmaledger
epi.novartis.pharmaledger

13
Ro

ot
 B

lo
ck

ch
ai

n
Do

m
ai

n Ledger Domain

Ledger Domain

Subdomain

Subdomain

Subdomain

Subdomain

KeySSI - Why?

A KeySSI is both an access token (a key) and an identifier.

KeySSI is the acronym of “Key Self-Sovereign Identifiers”

● Resolved to DSUs: Identify and locate DSUs (URI)

● Used also for DSU Encryption (decentralised access control)

● DSU Validation and ownership proofs

● Identity and control of the DSU’s anchors (zero access blockchain anchors)

● could be used to implement DID methods (DID documents obeying the

OpenDSU specific decentralised access control rules)

14

KeySSI - syntax ::::: :“type” “Ledger.Domain” “Type Specific
Substring”

“Control
Substring”ssi Hint

Or Tag“vn”

Diagram: Syntax of KeySSI Identifier

Examples:
ssi:seed:default:7PxHBdtYBVxzAQBsDAt9LneGQu5UKSndkg9ngf5d113E::v0
ssi:sza:default:e064764d4701ff563aa9be06c3b301ebdaa262a40c6ecc592254df75dbf097f6::v0

1. “ssi” just tells us it’s a SSI key
2. “type” defines complementary types of KeySSI
3. “Ledger.Domain” represent an ledger/blockchain domain
4. The “Type Specific Substrings” should contain enough random bits for good security.
5. The “Control Substring” used by the anchoring services to validate the requests for a new version of

the anchored DSU. The algorithm used for verification is type-specific.
6. The “vn” is a string reflecting the version number of the type. Not be confused with DSU versions.
7. The “hint” part is optional and subtype-specific.

15

KeySSI - Syntax

KeySSI - families example

SeedSSI - provide write access to the anchored DSU
(typically are not shared)

● sReadSSI - provides read access to the anchored
DSU. The DSU is encrypted with a symmetric key
derived from the sReadSSI

● szaSSI - provides Zero Access. Having a szaSSI
indicates that a SeedSSI exists and the attached
DSU has a specified number of versions

HashLinkSSI - used to store references to DSU in
brick storage

SeedSSI

sReadSSI

szaSSI

HashLinkSSI

[type: ${private key} control: ${public key}]

[type: hash(${private key}) control: ${public key}]

[type: hash(DSU content) control: “”]

[type: “” control: ${public key}]

16

DSU: Versioning and anchoringHashlink 1

Hashlink 2

Hashlink N

...

DSU Version 1

DSU Version 2

DSU Version N

...
KeySSI
(AnchorId)

St
at

e
1

+

State 2+

State 3

+

Anchor representation in a Blockchain / Ledger Brick Storage

17

Anchoring using KeySSIs

Similar with a docker container but lighter. You can mount DSUs in other DSUs
Can be used to instantiate embedded databases or micro-ledgers(transactions order from anchors)

Execution Environments
(Node.js, Service Workers)

DSU structure: Similar to a filesystem (Key/Value database)

Mount points
(Code)

Mount points
(Data)

...
DSU

DSU

DSU
DSU
DSU

DSU

DSU

Granularity given
by access

control

[code]
[constitution]
[app]

manifest

18

Files & Folders

SSApp - UI in wallets

SSApp comes from Self Sovereign Application

● Can be shared
● People and companies have ownership over data
● Is like a normal web application or mobile app
● The blockchain, anchoring, and bricks storages services work

only with encrypted data

Browser/ Mobile Phone

Sandbox

Bricks
Storage

Blockchain

SSApp

19

Digital Wallet DSU

Other DSUs
(Tickets, Cards, etc)

🏗🚘💳

Currencies DSUs

💸💰🏧

Credentials DSU
(Legal, Education, etc)

🏛🎫🎟

Medical Data DSUs

💊🏢

🤵📲
User Control

(UI)

Passwords DSU

🔏

Keys DSU

🔑

2FA DSU

👁🖐

Personal Data
DSU

🗃🔐

The vision of the OpenDSU Universal Wallets

Dynamic, interoperable and
portable Digital Wallet

Stored in DSUs

Customizable to the needs of
the users (individuals and
companies) : Contain DSU
embedding SSApps

Supports any device such as
smartphones, wearables,
browsers

Will be Digital Wallets the next
big applications platform?

OpenDSU “Standards”

Root
Blockchain

Execution
Environment

(Digital
Wallet)

Encrypted
DSU

Storage
(Bricks)

Ledger

Blockchain Anchoring

DSU

DSU Reconstruction

🏢
👫

Defining an open standard for handling off-chain storage to achieve an unified
approach for interoperability: Digital Wallets, Encrypted Data Vaults, Decentralised Key
Management Systems, Cloud and Edge Agents

Complementarity and vision alignments
● We are all aiming for “Digital sovereignty” in identities, data and even applications
● Many great ideas in the DID ecosystems
● OpenDSU can use most W3C DID technologies (but has different opinions on some core beliefs)

Different core beliefs (comparing with Hyperledger Aries but even with the core standards)
● Privacy Enhancing Technologies for enterprise world should be sound from all points of view…
● OpenDSU preference for using “general-purpose languages” and avoidance of too many “standards” on data

models and myriads of DSLs (Domain Specific Languages) and protocols.
● Divergent core assumption regarding the importance of “validation” or the role of web services & cloud agents

Why we diverge?
● Communication problems with the business stakeholders: they kind of understand digital signatures and

validated data by certificates or credentials data but have difficulties explaining “presentations”, “selective
disclosure” , ZKP or non-corelability in enterprise software.

● Interoperability is about semantics and not about data models. Custom code is unavoidable. Masquerading
customisations behind complex configurations and DSLs is just not such a good idea...

● Customisations are always required for UX, performance,etc. Semantics is always expressed in code! Trust is
coming from signed code. Glueing together many DSLs exacerbate the leaking abstraction problem. We should
not ignore lessons from “semi-failed” technologies like SOAP & WSDL, XML & Semantic Web

● Golden Hammers: exaggerations in the importance of issuer, hoder, verifier triangle or exaggerated role of
messaging protocols and of short living choreographies.

OpenDSU: Complementarity but also
disagreements with some DID & VC core beliefs

Identifiers that do not identify...
Non-correlating credentials creates “oxymoronic identities” that are
usable only when the transfer of value happens from prover to
verifiers and no value is transferred in the opposite sense. Naturally,
the verifiers (or actually the network) have a strong need to check that
the prover has enough of that value that it transferred to verifier.

 This seems to severely limiting the use cases (ZKP payments and
features for whistleblowers or “trustworthy” fake news creators...).
Otherise, by contradicting the whole thing: it is somehow implied that
at least one verifier should be able using external methods to somehow
trust enough (or properly identify - correlate) the prover and deliver
the services.

Proper identities (with correlating credentials) create trust for all parties because
establish clear responsibilities for each participant in a transaction.

1

Prepare environment

Load data, presentations,
custom preparations

2

Prepare verification

Load schemas, credentials,
resolve DIDs, etc

3

Verification

Check cryptographic
signatures, schema, etc

Validation

4

Other Validations

Use case specific
custom code

No silver bullets… lots of use case specific CODE*
*Schema, Configurations, Credential Definitions, Templates, etc.. are all some sort of DSLs (Domain Specific Languages) -> CODE

Trust? Signed code + UI that communicates trust

the weakest link is the CODE of the applications Governance is important but...

Towards Zero Access Cloud Infrastructure

Zero
Access

Zero
Access

Data Sharing & Identities Stack (OpenDSU)Decentralised Identities Stack (Aries)

Bricking, Anchoring, Message Queues, BDNS, DIDs

Reusable code as Validation Strategies in OpenDSU

● Issue verifiable credentials, X.509 certificates, just sign documents
● Generate specific presentations (when we need presentations)
● Validate proofs on data (verify signatures, presentations, check

other constraints and trust sources)

Abstracts all the details

● Data Models & Representations

● Cryptographic primitives

Conclusions
● General-purpose languages and not DSLs…

○ Even for interoperability: migratory code & trust from signed code
● Wallets should be dynamic and open (like Web Browsers: capable to load any site)
● Digital Sovereignty

○ Starts with decentralised access control (KeySSIs) and Data Sharing
○ Cloud Agents are mostly a plague and a threat for the whole movement...

● “Validation Strategies” are central
○ Not a few vague statements in the W3C VC standard
○ Trust and security are such multifaceted problems.
○ Everything is code... Let’s take trust from signing ALL this code!

● Standards... maybe not so fast
○ SSIs solutions space is large and open for innovations and darwinian competitions
○ “oxymoronic identities” does not help adoption

Thank you! Questions?

"The nice thing about standards is that you have so many to
choose from; furthermore, if you do not like any of them, you
can just wait for next year's model."

 Andrew Tanenbaum

www.opendsu.com
www.github.com/privatesky

http://www.opendsu.com
http://www.github.com/privatesky

